圆的面积和周长公式(求半圆面积的公式)
今天和朋友们分享圆的面积和周长公式相关的知识,相信大家通过本文介绍也能对求半圆面积的公式有自已的收获和理解。自己轻松搞问题。
文章目录一览:
圆的面积和周长计算公式
圆的周长:C=2πr=πd(r为半径,d为直径)。
圆的面积计算公式:圆面积公式:S=πr²或S=π×(d/2)²。(π表示圆周率(3.1415927……),r表示半径,d表示直径)。
体积公式
1、长方体的体积=长×宽×高
2、正方体的体积=棱长×棱长×棱长
3、(重点)圆柱的体积:圆柱的体积等于底面积乘高。
4、(重点)圆锥的体积=底面积×高÷3。
扩展资料
1、长方形的面积=长×宽
2、正方形的面积=边长×边长
3、三角形的面积=底×高÷2
4、平行四边形的面积=底×高
5、梯形的面积=(上底下底)×高÷2
6、(重点)圆的面积=圆周率×半径2
7、(重点)圆柱的侧面积:圆柱的侧面积等于底面的周长乘高。
8、(重点)圆柱的表面积:圆柱的表面积=底面积侧面积
圆的周长和面积公式是什么?
圆的周长和面积公式如下
1、圆周长就是:C=πd或者C=2πr(其中 d是圆的直径, r是圆的半径)。
2、圆面积公式:S=πr²或S=π×(d/2)²。(π表示圆周率(3.1415927……),r表示半径,d表示直径)。
扩展资料:
1、圆周长是指在圆中内接一个正n边形,边长设为an,正边形的周长为n×an,当n不断增大的时候,正边形的周长不断接近圆的周长C的数学现象,即:n趋近于无穷,C=n×an。
2、圆周率:数学家刘徽用的是“割圆术”的方法,也就是用圆的内接正多边形和外切正多边形的周长逼近圆周长,求得圆接近192边型,求得圆周率大约是3.14。
3、扇形面积:
在半径为R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR2;;,所以圆心角为n°的扇形面积:
S=(nπR2)÷360
扇形还有另一个面积公式
S=1/2lR (其中l为弧长,R为半径 )
本来S=(nπR2)÷360
按弧度制。2π=360度。因为n的单位为度.所以l为角度为n时所对应的弧长.即.l=θR=(n/180)π×R
∴s=(n/180)π*R*π*R/2π=1/2lR.
参考资料:百度百科-圆的周长
百度百科-圆的面积
圆的周长和面积公式
周长公式
1、圆的周长 :C=2πr (r:半径)
2、半圆周长:C=πr+2r
二、圆的面积
1、面积:S=πr²
2、半圆面积:S=πr²/2
三、弧长角度公式
1、扇形弧长:L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)
2、扇形面积:S=nπ R²/360=LR/2(L为扇形的弧长)
3、圆锥底面半径: r=nR/360(r为底面半径)(n为圆心角)
4、扇形面积公式:S=nπr²/360=rl/2
R:半径,n:弧所对圆心角度数,π:圆周率,L:扇形对应的弧长。
也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n。
四、圆的方程:
1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。
2、圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。
五、圆和点的位置关系:
以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r.
六、直线与圆有3种位置关系:
无公共点为相离;
有两个公共点为相交;
圆与直线有唯一公共点为相切。这条直线叫做圆的切线,这个唯一的公共点叫做切点.以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。
拓展资料:
一、圆的性质
(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
(2)有关圆周角和圆心角的性质和定理
① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
(3)有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。
④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AC与BD分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比正方形、长方形、三角形的面积大。
参考链接:圆_百度百科
圆的周长和面积的公式是什么
圆的周长: C=2πr=πd(r为半径,d为直径)。
圆的面积计算公式: 或 。
圆的其他公式:
弧长角度公式:
扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)
扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)
圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)
扇形面积公式:
R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长。
也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n,如下:
(L为弧长,R为扇形半径)
推导过程:S=πr²×L/2πr=LR/2(L=│α│·R)。
扩展资料:
圆的性质
⑴圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理
① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
⑶有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。
④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AC与BD分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比正方形、长方形、三角形的面积大。
参考资料:百度百科---圆
圆的面积和周长公式是什么?
圆形的周长公式是:周长=2πr,圆形的面积公式是:面积=πr²,在这些公式中r是半径,π就是圆周率。
圆形是生活中比较常见的一种图形,很多的东西都是圆形的状态,圆形属于典型的轴对称和中心对称的图形,它的对称轴其实就是所有的通过它圆心的直线,这样的直线是有无数条的。至于说中心对称,它的对称中心就是它的圆心。
生活中比较常见的像是圆形的桌子,桌面典型的是圆的,还有杯子的口一般也是圆的。圆其实是属于几何图形,可以使用圆规来画出来。
圆的性质:
圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。垂径定理的逆定理:平分弦的直径垂直于弦,并且平分弦所对的2条弧。
圆的周长与面积的计算公式是什么?
一、周长公式
圆的周长 :C=2πr (r:半径)
半圆周长:C=πr+2r
二、圆的面积
面积:S=πr²
半圆面积:S=πr²/2
三、弧长角度公式
扇形弧长:L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)
扇形面积:S=nπ R²/360=LR/2(L为扇形的弧长)
圆锥底面半径: r=nR/360(r为底面半径)(n为圆心角)
扇形面积公式:
R:半径,n:弧所对圆心角度数,π:圆周率,L:扇形对应的弧长。
也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n。
扩展资料:
直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。
圆的方程:
圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。
圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。
参考资料:圆——百度百科
关于圆的面积和周长公式和求半圆面积的公式的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。