反三角函数公式(反三角函数公式大全表)
本篇文章给大家谈谈反三角函数公式,以及反三角函数公式大全表对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
文章目录一览:
反三角函数公式是什么?
公式如下:
反三角函数的公式有如下一些,反三角函数是一种基本初等函数,常见公式主要有:arcsin(-x)=-arcsinx、arccos(-x)=π-arccosx、arctan(-x)=-arctanx、arccot(-x)=π-arccotx等。
简介:
反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其正弦、余弦、正切、余切 ,正割,余割为x的角。
三角函数的反函数是个多值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数 y=x 对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。
反三角函数公式有哪些
反三角函数是数学学习中一个很重要的知识点,下面整理了相关知识点和公式,希望能帮助到大家。
反三角函数的定义
设函数y=f(x)的定义域是A,值域是C.我们从式子y=f(x)中解出x得到式子x=φ(y).如果对于y在C中的任何一个值,通过式子x=φ(y),x在A中都有唯一的值和它对应,那么式子x=φ(y)叫函数y=f(x)的反函数,记作x=f-1(y),习惯表示为y=f-1(x)。注意:函数y=f(x)的定义域和值域,分别是反函数y=f-1(x)的值域和定义域。
例如:f(x)的定义域是[-1,+∞],值域是[0,+∞),它的反函数定义域为[0,+∞),值域是[-1,+∞)。
反三角函数公式
余角关系
arcsin(x)+arccos(x)=π/2
arctan(x)+arccot(x)=π/2
arcsec(x)+arccsc(x)=π/2
负数关系
arcsin(-x)=-arcsin(x)
arccos(-x)=π-arccos(x)
arctan(-x)=-arctan(x)
arccot(-x)=π-arccot(x)
arcsec(-x)=π-arcsec(x)
arccsc(-x)=-arccsc(x)
反三角函数其他公式
cos(arcsinx)=√(1-x^2)
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x
当x∈[-π/2,π/2]有arcsin(sinx)=x
x∈[0,π],arccos(cosx)=x
x∈(-π/2,π/2),arctan(tanx)=x
x∈(0,π),arccot(cotx)=x
x0,arctanx=π/2-arctan1/x,arccotx类似
若(arctanx+arctany)∈(-π/2,π/2),则arctanx+arctany=arctan((x+y)/(1-xy))
反三角函数转换公式
反三角函数公式:
arcsin(-x)=-arcsinx
arccos(-x)=∏-arccosx
arctan(-x)=-arctanx
arccot(-x)=∏-arccotx
arcsinx+arccosx=∏/2=arctanx+arccotx
sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)
当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x
当x∈〔0,∏〕,arccos(cosx)=x
x∈(—∏/2,∏/2),arctan(tanx)=x
x∈(0,∏),arccot(cotx)=x
x〉0,arctanx=arctan1/x,arccotx类似
若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)
同角三角函数的基本关系式
倒数关系: 商的关系: 平方关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1 sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
诱导公式
sin(-α)=-sinα
cos(-α)=cosα tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
两角和与差的三角函数公式 万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα ·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα ·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
半角的正弦、余弦和正切公式 三角函数的降幂公式
二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函数的和差化积公式 三角函数的积化和差公式
α+β α-β
sinα+sinβ=2sin—--·cos—-—
2 2
α+β α-β
sinα-sinβ=2cos—--·sin—-—
2 2
α+β α-β
cosα+cosβ=2cos—--·cos—-—
2 2
α+β α-β
cosα-cosβ=-2sin—--·sin—-—
2 2 1
sinα ·cosβ=-[sin(α+β)+sin(α-β)]
2
1
cosα ·sinβ=-[sin(α+β)-sin(α-β)]
2
1
cosα ·cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα ·sinβ=- -[cos(α+β)-cos(α-β)]
2
数学反三角函数定义及公式
反三角函数并不能狭义的理解为三角函数的反函数,是个多值函数。它是反正弦Arcsin
x,反余弦Arccos
x,反正切Arctan
x,反余切Arccot
x这些函数的统称,各自表示其正弦、余弦、正切、余切为x的角。
反三角函数其他公式
cos(arcsinx)=√(1-x^2)
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x
当
x∈[-π/2,π/2]
有arcsin(sinx)=x
x∈[0,π],
arccos(cosx)=x
x∈(-π/2,π/2),
arctan(tanx)=x
x∈(0,π),
arccot(cotx)=x
x0,arctanx=π/2-arctan1/x,arccotx类似
若
(arctanx+arctany)∈(-π/2,π/2),则
arctanx+arctany=arctan((x+y)/(1-xy))
反三角函数反正切和公式 arctanA+arctanB=?
设arctanA=x,arctanB=y
因为tanx=A,tany=B
利用两角和的正切公式,可得:
tan(x+y)=(tanx+tany)/(1-tanxtany)=(A+B)/(1-AB)
所以 x+y=arctan[(A+B)/(1-AB)]
即arctanA+arctanB=arctan[(A+B)/(1-AB)]
拓展资料:
反三角函数并不能狭义的理解为三角函数的反函数,是个多值函数。三角函数的反函数不是单值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数 y=x 对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。
为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:
1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;
2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);
3、为了使研究方便,常要求所选择的区间包含0到π/2的角;
4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。
参考资料:百度百科:反三角函数
反三角函数计算公式大全
反三角函数是一种基本初等函数。这篇文章给大家分享反三角函数的计算公式,一起看一下具体内容。
反正弦三角函数计算公式
(1)arcsinx+arcsiny
arcsinx+arcsiny=arcsin(x√(1-y 2 )+y√(1-x 2 )),xy≤0或x 2+ y 2 ≤1。
arcsinx+arcsiny=π-arcsin(x√(1-y 2 )+y√(1-x 2 )),x>0且y>0且x 2+ y 2 >1。
arcsinx+arcsiny=-π-arcsin(x√(1-y 2 )+y√(1-x 2 )),x<0且y<0且x 2+ y 2 >1。
(2)arcsinx-arcsiny
arcsinx-arcsiny=arcsin(x√(1-y 2 )-y√(1-x 2 )),xy≤0或x 2+ y 2 ≤1。
arcsinx-arcsiny=π-arcsin(x√(1-y 2 )-y√(1-x 2 )),x>0且y<0且x 2+ y 2 >1。
arcsinx-arcsiny=-π-arcsin(x√(1-y 2 )+y√(1-x 2 )),x<0且y>0且x 2+ y 2 >1。
反余弦三角函数计算公式
(3)arccos x +arccos y
arccos x +arccos y = arccos(xy-√(1-x 2 )√(1-y 2 )),x+y≥0。
arccos x +arccos y =2π- arccos(xy-√(1-x 2 )√(1-y 2 )),x+y<0。
(4)arccos x -arccos y
arccos x -arccos y =- arccos(xy+√(1-x 2 )√(1-y 2 )),x≥y。
arccos x -arccos y = arccos(xy+√(1-x 2 )√(1-y 2 )),x<y。
反正切三角函数计算公式
(5)arctanx+arctany
arctanx+arctany=arctan(x+y)/(1-xy),xy<1。
arctanx+arctany=π+arctan(x+y)/(1-xy),x>0,xy>1。
arctanx+arctany=-π+arctan(x+y)/(1-xy),x<0,xy>1。
(6)arctanx-arctany
arctanx-arctany=arctan(x-y)/(1-xy),xy>-1。
arctanx-arctany=π+arctan(x-y)/(1-xy),x>0,xy<-1。
arctanx-arctany=-π+arctan(x-y)/(1-xy),x<0,xy<-1。
反余切三角函数计算公式
(7)arccotx+arccoty
arccotx+arccoty=arccot(xy-1)/(x+y),x>-y。
arccotx+arccoty=arccot[(xy-1)/(x+y)]+π,x<-y。
反三角函数公式的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于反三角函数公式大全表、反三角函数公式的信息别忘了在本站进行查找喔。