当前位置:首页 > 生活经验 > 正文内容

简单的比的应用学习过程(简单的比的思维导图)

飞龙2023年02月25日 12:15:11生活经验173

当朋友们看到这个文章时想必是想要了解简单的比的应用学习过程相关的知识,这里同时多从个角度为大家介绍简单的比的思维导图相应的内容。

文章目录一览:

《比的应用》说课稿

作为一位兢兢业业的人民教师,可能需要进行说课稿编写工作,借助说课稿可以有效提高教学效率。快来参考说课稿是怎么写的吧!以下是我为大家收集的《比的应用》说课稿范文,仅供参考,欢迎大家阅读。

《比的应用》说课稿1

一、说教材

我说课的内容是九年义务教育人教版六年制小学数学第十一册第二单元52页例2和例3——比的应用,在本册教材中主要就是按比例分配。

之所以将例2和例3放在一节课,主要是为了形成知识的层次和渐进,以利于通过知识点的对比,让学生坚定对知识的感知结果。

按比例分配是把一个数量按照一定的比进行分配,它是在学生学习了“平均分”和“分数应用题”的基础上进行教学的延伸。教材是采用把比化为分数,用学生前面已学过的分数的知识来解答。这样安排学生容易接受,不仅加深了对分数应用题的理解,还有利于加强知识间的联系,为今后学习正反比例等知识打下基础。

二、说学生

六年级的学生在分析问题和综合运用知识方面具有一定的能力,而我班大部分学生思维活跃,能结合自己已有的知识去分析问题,学习新知识,具有一定的自学能力和实践操作能力。

三、说教学目标

1、使学生明确按比例分配是比的应用,又是“平均分”的发展,明确按比例分配的意义和作用。

2、让学生掌握按比例分配应用题的特征和解答方法,并能应用这一直是解决实际生活中的问题。

3、培养学生观察分析和动手操作以及自学能力,促进能力的发展。

在轰轰烈烈进行基础教育课程改革的今天,如何面向全体学生,使学生得到充分、自由、和谐、全面的发展是制定课堂教学目标的主导思想。因此,为此,依据《数学课程标准》,我制定了这堂课的以上三个教学目标。

四、说重难点

重点:按比例分配应用题的特征和解答方法

难点:让学生知道“把什么数量按什么比例”进行分配

按比例分配应用题具有典型的特征,理解并掌握了这种特征,就能正确地运用这一知识去解决实际问题。

而把什么数量按什么比例进行分配,则往往是很大一部分学生感觉比较困难的,因此将其作为难点。主要将采用“自学——比较——应用”的方式来突出重点,突破难点。

五、说教法和学法

本节课主要采用操作实践,复习引入,指导自学,分析比较,实际应用等教学法。

推广素质教育的主渠道在于我们的课堂教学,如何把学生由被动听变为主动参与,关键在于要打破传统的灌输式教学模式。因此,我们要树立起尊重学生,相信学生,放手让学生主动学习的观念。针对这种教学思想,本节课的教学,要注意以下几个问题:

首先要营造一个愉快、和谐、民主的课堂气氛。

应该通过老师的语言、动作、表情,传递给学生一种亲切、鼓励、信任的情感意识,形成和谐的课堂氛围,从而有效地引导学生主动学习,体现学生学习的主体地位。

其次是要调动学生学习的主动性,激发学习兴趣。采取的手段主要是让学生动手操作,初步感知。安排动手操作,促使学生多种感官的参与,在“平均分”的基础上进一步感知“按比例分配”的概念。

第三就是指导自学,培养自学能力。

让学生带着教师给出的问题边自学,边思考,达到学有所思,学有所获的目的,这样,可以做到既让学生学习,又让学生的能力得到培养。

第四就是重视应用,正所谓“学以致用”,这样既可以检验学生的学习情况,又可以巩固学生在本节课所学的知识,可谓一举两得。

六、教学程序

本课的教学程序共分为两个部分:

第一部分主要解决什么是按比例分配,采用分石子的实际操作法,让学生通过动手操作,从而感知,以加深学生对按比例分配的理解;第二部分主要解决怎么按比例分配的问题。

要让学生掌握按比例分配应用题的特征和解答方法,并能应用这一直是解决实际生活中的问题,就必须要首先让学生理解什么是“按比例分配”,而采用分石子的实际操作法,即结合农村学生的实际,又让学生通过动手操作来感知,既贯彻了新课程理念,又体现了学生学习的主体地位,更是为了实现教学目标,突出重点,突破难点。

第一部分

什么是“按比例分配”

操作感知,导入新课。

在实际情境中理解按比例分配【《数学课程标准》第21页】

以同方为单位分一分

(这样有利于培养学生的合作学习的能力)

(1)、按1:1把8颗石子分成两部分。

(2)、按2:1把8颗石子分成两部分。

通过动手操作,让学生感知第一种情况是“平均分”,而第二种情况不是“平均分”。说明在我们日常生活和工农业生产中,除了“平均分”以外,还常常要把一个数量按照一定的比来进行分配,除了第一种情况是“平均分”外,还有第二种情况,由此导入新课,“按比例分配”。

这样安排导入有利于学生把握知识的发展变化与延伸,从而激发学生学习兴趣。

第二部分

怎样按比例分配

(一)、复习

(1)、甲数是8,乙数是10,则甲数是乙数的(),甲数与乙数的比是():()

(2)、第52页出示复习题:一个农场计划在100公顷的地里播种60公顷小麦和40公顷玉米;小麦和玉米的播种面积各占这块地的几分之几?小麦和玉米播种面积的比是多少?

这样安排,目的是把握新旧知识和连接点,为分散难点起着积极的迁移作用。

(二)、自学

1、提出问题,让学生有目的的自学

先出示自学要求:这道题分配的是什么?按照什么来分配?播种小麦和玉米的面积比是3:2,表示播种小麦和总播种面积的比是几比几?播种的小麦占总播种面积的几分之几?玉米的面积与总播种面积的比是几比几?播种的玉米占总播种面积的几分之几?

老师引导学生尝试,让学生自学课本例2。其目的是让学生自己在课本中找出解决问题的方法。

2、学生小组自学,教师进行指导

小组自学是合作学习的重要形式,它有利于培养学生的合作意识,这也是新课程要求的要培养学生的能力和品质之一。

3、学生汇报,师生共同解题

先检查自学情况,师生共同简略解决例2

然后让学生汇报:把谁按什么比例分配

4、自学例3

让学生在学习、理解了例2的基础上自然的过渡到例3,并运用例2的技能来解决例3,使学生实现知识和技能的迁移以及综合运用。

5、比较例2、例3

例2是把总面积100公顷按3:2进行分配,例3是把总棵树按3个班的人数所占比例进行分配。

这样做的目的是通过比较,让学生知道,按比例分配既可以是2个量比,还可以是3个或3个以上的量比。

(三)、练习

多层次训练,巩固新知识,形成技能。

练习是数学课堂教学一个重要环节,练习力求做到从易到难,由浅入深,有层次,有坡度,新旧知识融洽恰当,形成技能技巧,开拓思维,发展能力,达到练习的预期目的。

1、基础练习

某班男女学生人数的比是9:4,男生占全班人数的(),女生占全班人数的()。

这个练习用采分散难点,促使知识结构的内化。

2、对应性练习。

62页的“做一做”第1题

采用讲练结合的形式巩固所学知识,让学生在学习新知之后即时得到巩固。

3、综合性练习。

(1)甲、乙两数的平均数是50,甲和乙的比是7:3,甲、乙两数各是多少?

(2)一块长方形地周长120米,长和宽的比是3:1,它的长和宽各是多少米?

这种练习旨在加强对比,提高学生分析和综合运用知识的能力。

(四)、运用

混凝土,石子、沙和水泥的比是3:2:5,现在有20吨水泥,需要多少石子和沙才能生产出这种合格的混凝土?

有了基础知识,并不等于拥有了技能。只有在掌握了基本知识方法的同时,教师大力提供应用时空,让学生自主地运用“双基”去解决实际问题,才能使学生形成技能和对知识与方法的迁移应用能力,应用已有的知识与方法去解决全新而又生疏的实际问题,这一点对于创新能力和创新精神的培养非常重要。

(五)、全课总结

你学会了什么知识?掌握了哪些方法?

这样做既检验了效果,又体现了课堂教学的整体性,从而培养学生的概括和口头表达能力。

《比的应用》说课稿2

说教材

小学数学六年级上册比例的应用,本节课是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的`。主要包括正、反比例的应用题,这是比和比例知识的综合运用,教材通过两个例题,讲解正、反比例应用题的解法通过讲解使学生掌握正、反比例应用题的特点以及解题的步骤。

用正、反比例解应用题,首先要根据题意分析数量关系,能从题中找出两种相关联的量,这两种量中相对应的两个数的比值(或积)是一定的,从而判断这两种量是否成正(或者反)比例,然后设未知数X,比例解答,判断过程也是正反比例意义实际应用的过程。

说目标

一、知识目标

1、使学生能正确判断应用题中涉及的量成什么比例关系

2、使学生能利用正、反比例的意义正确解答应用题

二、能力目标

1、培养学生的判断推理能力

2、培养学生的分析能力

三、情感目标

引导学生利用已有的知识,自己探索,解决实际问题,培养学生的勇于探索的精神。

教学重点、难点

正确判断题中数量成何比例,根据相等关系列出关系式

教学方法

引导探究,合作学习。

说教学流程

一、复习导入

本节课的教学内容是正、反比例的应用,因此通过本小节的教学,使学生加深对正、反比例的意义的理解,能正确判断成正、反比的量。

二、探究新知

学习例题正、反比例的应用题。学生在已学过的四则应用题中,实际已经接触只是用归一,归总的方法来解答,因此在教学中先让学生用已学过的方法解答:再引导运用新知做这样用移类比的转化思想进行教学,使新知识不新,旧知识不旧,激发学生学习兴趣。

首先让学生用以前方法解答,然后问:这道题里有哪两种量?成什么比例关系?为什么?引导生判断两种量的比例关系,再根据比例的意义列出等式解答,这样加深对比例的理解,又揭示了与旧知识的联系。

三、新课小结

通过例题的讲解,学生总结用比例解答应用题关键?

四、练习提高

1、基础练习

2、判断说理不解答

3、变成练习

五、本课小结

六、效果预测

本节课学会找两种相关联的量,并学会判断这两种是否成正、反比例关系,在解决实际问题的过程中,学生能积极主动参与,发挥了学生的主体地位。

小学六年级上册数学比的基本性质教案

在课前,做好数学教案是实施课堂教学的基本指导材料。为此,下面我整理了人教版小学六年级上册数学比的基本性质教案内容以供大家阅读。

人教版小学六年级上册数学比的基本性质教案

教学内容:人教版小学数学教材六年级上册第50~51页内容及相关练习。

教学目标:

1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的 方法 。

2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

教学重点:理解比的基本性质

教学难点:正确应用比的基本性质化简比

教学准备:课件,答题纸,实物投影。

教学过程:

一、 复习引入

1.师:同学们先来回忆一下,关于比已经学习了什么知识?

预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

2.你能直接说出700÷25的商吗?

(1)你是怎么想的?

(2)依据是什么?

3.你还记得分数的基本性质吗?举例说明。

【设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。

二、新知探究

(一)猜想比的基本性质

1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?

预设:比的基本性质。

2.学生纷纷猜想比的基本性质。

预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

【设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。

(二)验证比的基本性质

师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

1.教师说明合作要求。

(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

(2)小组讨论学习。

①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。

②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

③选派一个同学代表小组进行发言。

2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。

预设:根据比与除法、分数的关系进行验证;根据比值验证。

3.全班验证。

;

;

16:20=(16○□):(20○□)。

4.完善归纳,概括出比的基本性质。

上题中○内可以怎样填?□内可以填任意数吗?为什么?

(1)学生发表自己的见解并说明理由,教师完善板书。

(2)学生打开书本读一读比的基本性质,教师板书课题。(比的基本性质)

5.质疑辨析,深化认识。

利用比的基本性质做出准确判断:

(1) ( )

(2) ( )

(3) ( )

(4)比的前项乘3,要使比值不变,比的后项应除以3。 ( )

【设计意图】基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,这样可以促使每个学生经历自主探究的学习过程,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。

三、比的基本性质的应用

师:同学们,你们还记得我们学习分数的基本性质的用途吗?什么是最简分数?

今天我们发现的比的基本性质也有一个非常重要的用途──可以化简比,进而得到一个最简整数比。

(一)理解最简整数比的含义。

1.引导学生自学最简整数比的相关知识。

预设:前项、后项互质的整数比称为最简整数比。

2.从下列各比中找出最简整数比,并简述理由。

3:4; 18:12; 19:10; ; 0.75:2。

(二)初步应用。

1.化简前项、后项都是整数的比。(课件出示教材第50页例1)

学生独立尝试,化简后交流。

(1)15:10=(15÷5):(10÷5)=3:2;

(2)180:120=(180÷□):(120÷□)=( ):( )。

预设:除以最大公因数和逐步除以公因数两种方法,但重点强调除以最大公因数的方法。

2.化简前项、后项出现分数、小数的比。(课件出示)

师:对于前项、后项是整数的比,我们只要除以它们的最大公因数就可以了,但是像 : 和0.75:2,

这两个比不是最简整数比,你们能自己找到化简的方法吗?四人小组讨论研究,找到化简的方法。

学生研究写出具体过程, 总结 方法,并选代表展示汇报。教师对不同方法进行比较,引导学生掌握一般方法。

预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

3.归纳小结:同学们通过自己的努力探索,总结出了将各类比化为最简整数比的方法。化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。

4.方法补充,区分化简比和求比值。

还可以用什么方法化简比?(求比值)

化简比和求比值有什么不同?

预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

5.尝试练习。

把下面各比化成最简单的整数比(出示教材第51页“做一做”)。

32:16; 48:40; 0.15:0.3;

; ; 。

【设计意图】新课程标准提出教学中应该充分体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人。因此在运用比的基本性质化简比的教学过程中,通过自学、独立探究、小组合作等方式,为学生创造一个积极的数学活动的机会,鼓励学生自主探究,找到化简比的方法。

四、巩固练习

(一)基础练习

1.教材第53页第4题。

把下列各比化成后项是100的比。

(1)学校 种植 树苗,成活的棵数与种植总棵数的比是49:50。

(2)要配制一种药水,药剂的质量与药水总质量的比是0.12:1。

(3)某企业去年实际产值与计划产值的比是275万:250万。

2.教材第53页第6题。

(二)拓展练习(PPT课件出示)

学生口答完成。

1.2:3这个比中,前项增加12,要使比值不变,后项应该增加( )。

2.六(1)班男生人数是女生人数的1.2倍,男生、女生人数的比是( ),男生和全班人数的比是( ),女生和全班人数的比是( )

【设计意图】练习的设计要紧紧围绕教学的重难点,同时练习的编排应体现从易到难的层次性。第1题是针对比的基本性质的基础练习,同时也为后续百分数的学习埋下伏笔。第2题训练单位不同的两个数量的比的化简方法,培养学生的审题能力。拓展练习不仅发展学生思维的灵活性、培养学生的创造能力,而且很好地巩固了本节课的知识,同时这类题型也是分数应用题、比例应用题的基础训练,也为以后分数应用题和比例应用题的学习打下扎实的基础。

五、课堂小结

这节课你有什么收获?还有什么疑问?

课后 反思 :

《按比分配解决问题》教学设计

教学内容:人教版小学数学教材六年级上册第54页例2及相关练习。

教学目标:

1.能在实例的分析中理解按比分配的实际意义。

2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。

3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。

教学重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。

教学难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。

教学准备:课件。

教学过程:

一、情境导入

课件出示:女生与男生的人数比是5:7。

师:“女生和男生的人数比是5:7”,从这句话中,你得到了哪些信息?

【设计意图】一条简单的现实生活信息,不但使学生体会到数学与生活的联系,激发了学生的学习兴趣,而且培养了学生分析问题、解决问题的能力。

二、实例探究

(一)自主探索

1.出示:六(2)班一共有48人,女生与男生的人数比是5:7。

师:根据这两条信息,你能求出什么?男生、女生各有多少人呢?你会算吗?

2.学生独立尝试。

3.同桌交流。

师:与同桌交流一下你的想法和做法,有不同的方法都可以写下来。(教师巡视指导)

4.汇报:

请不同做法的学生上台板演,交流汇报。

预设(1):48÷(5+7)=4(人);

女生:4×5=20(人);

男生:4×7=28(人)。

师:介绍一下你的想法吧。第一步求的是什么?第二步和第三步分别是什么意思?这种方法是先求什么?再算什么?

师:还有不同的解决方法吗?

预设(2):女生: (人);

男生: (人)。

师:这种方法中, 是什么意思? 呢?

5.小结:刚才同学们用不同的方法解决了同一个问题,我们再一起来看看(配合课件演示)。

方法一是根据比的意义,看看一共分成几份,先求出一份的数量,再算几份的数量;方法二是根据比与分数的关系,看看男生、女生各占总人数的几分之几,再用分数的知识来解决。这两种方法都不失为好方法,你更喜欢哪种方法?为什么?

【设计意图】在引导学生探究时,没有直接用书本上的例题,而是用了班级男生、女生人数比这一实际情况。因为是学生非常熟悉的事例,所以学生很乐意去探索、交流、实践。这样的设计不仅降低了学习的难度,而且激发了学生的学习兴趣。

(二)揭示课题

师:像上题这样,把数量按一定的比来进行分配的方法叫做按比分配。今天我们就一起学习按比分配。(板书课题:按比分配)

(三)实践尝试

出示例2:这是某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。

1.阅读与理解。

浓缩液和稀释液指的是什么?(浓缩液是纯清洁剂,稀释液是加水之后的清洁剂。)

师:你能用刚才的方法解决这一问题吗?(学生独立解题,交流汇报。)

2.分析与解答。

预设(1):每份是500÷5=100(mL),浓缩液有100×1=100(mL),水有100×4=400(mL)。

师:这里的5表示什么?(把总体积平均分成5份。)

预设(2):浓缩液有 (mL),水有 (mL)。

师: 表示什么?(浓缩液占总体积的 ;)

呢?(水占总体积的 。)

3.回顾与反思。

师:可以用怎样的方法对结果进行验证?

预设:看浓缩液与水的比是不是等于1:4。

小结:体现在问题解决的过程中,要看清楚1:4到底是哪两个量之间的比。

【设计意图】把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。

三、实践应用

(一)基本练习

1.师:打开教材第55页,看第一题。

(1)师:用自己喜欢的方法独立算一算,看谁算得又快又对。

(2)交流: 说说 你的方法。

2.出示:李伯伯家里的菜地共800平方米,他准备种黄瓜和茄子。

师:请你来设计一下,可以怎么分配?

预设一:1:1。

师:如果按1:1分配,那么种黄瓜和茄子的面积分别是多少平方米?(学生自主计算)

师:通过计算,发现按1:1分配其实就是我们以前学过的“平均分”。是的,平均分就是按1:1分配,是按比分配中的特例。

对于其余各种分配方法,都让学生快速算一算再交流。

(二)发展提高

1.师:增加点难度行不行?我把这一题变一下。

出示教材第56页第7题:李伯伯家里的菜地共800平方米,他准备用 种西红柿,剩下的按2:1的面积比种黄瓜和茄子。三种蔬菜的面积分别是多少平方米?

(1)比较:这一题和前几题相比,有什么不同?

(2)分析:这一题是把哪个数量进行分配,按怎样的比来分配?这个数量直接告诉我们了吗?所以我们应该先算什么?那你会算吗?

(3)学生尝试。

(4)交流算法。

师:你是怎么算的?(展示学生作业)还有同学用其他方法做吗?介绍一下你们的方法。

师:这几位同学的方法有什么共同点?有什么不同点?

2.出示:学校把栽70棵树的任务按照六年级三个班的人数分配给各班。一班有46人,二班有44人,三班有50人。三个班各应栽多少棵树?

(1)比较分析:

师:这一题又有什么不一样?没有直接给出“比”,不能直接按比分配了,那怎么办?

师:我们可以先求出比,再按比进行分配。

(2)学生独立尝试,交流算法。

(三)小结

师:通过上面两个问题的解答,你觉得在解答按比分配的问题时应注意什么?

师:说得对,在解答这类问题时,我们要认真审题,看清楚是对哪个数量进行分配,是按什么比分配的;如果题目没有直接给出比,我们要先根据题目信息求出比,再按比分配。

【设计意图】创设问题情境,从基本练习到综合性较强的问题,再到没有直接给出比的题目,层层深入,让学生在解决实际问题的过程中感受学习的乐趣和价值,不仅培养了学生独立解题的能力,而且还可以让学生在实践的探索中验证、品尝自己的学习成果,再次感受成功带来的乐趣。

四、课堂总结

1.师:学到这里,谁能告诉我们,今天这节课我们主要研究了什么?说说你的收获和感受。(指名回答)

2.课外延伸。

师:比在生活中应用非常广泛,请你课后搜集生活中的实例,编一道按比分配的题目,在下一节课中进行交流学习。

【设计意图】让学生自己抓住“收获”、“感受”来进行课堂总结,可以再次让学生对所学知识进行梳理,培养评价、反思的能力,让学生更加深切地感受到数学的魅力。

小学数学知识点 顺口溜

一、20以内进位加法

看大数,分小数,凑整十,加零头。

(掌握“凑十法”,提倡“递推法”。)

二、20以内退位减法

20以内退位减,口算方法和简单。

十位退一,个加补,又准又快写得数。

三、加法意义,竖式计算

两数合并用加法,加的结果叫做和。

数位对其从右起,逢十进一别忘记。

四、减法的意义竖式计算

从大去小用减法,减的结果叫做差。

数位对齐从右起,不够减时前位拿。

五、两位数乘法

两位数乘法并不难,计算过程有三点:

乘数个位要先算,再用十位乘一遍,

乘积末位是关键,要和十位来对端;

两次乘积相加完,层层计算记心间

六、两位数除法

除数两位看两位,两位不够除三位。

除到那位商那位,余数要比除数小,

然后再除下一位,试商方法要灵活,

掌握“四舍五入”法,还有“同商比较法”,

了解“折半定商法”,不足除数商九、八。(包括:同头、高位少1)

七、混合运算

拿到式题认真看,先算乘除后加碱。

遇到括号要先算,运用规律要改变。

一些数据要记牢,技能技巧掌握好。

八、加、减法速算

加减法速算你莫愁,拿到算式看清楚,

接近整百凑整数,如下处理无谬误。

加法不足减补数,超余零头加在后。

减法不足加补数,超余零头减在后。

九、多位数读法

读书方法很容易,首先四位一分级。

要从最高位读起,几千几百几十几。

级的单位读亿万,末尾有零都不读

(级末尾0不读,整个数末尾0不读)

中间夹零读一个,汉字表达没参和。

注读零的:

1、万级个级首位有零

2、整个万级是零

3、上级末尾下级首位都有0

4、每级中间有0

十、小数加减法

小数加减计算题,以点对准好对齐。

算法如同算整数,算毕把点往下移。

十一、小数乘法

小数乘小数,法则同整数。

定积小数位,因数共同凑。

十二、除数是小数的除法

除数的小数点一划,(去掉小数点)

被除数的小数点搬家,向右搬家搬几位,

除数的小数位数决定它。

十三、质数歌

一位质数2、3、5和7,

两位1、3、7、9前加1,

4后3,7前有9,7后1,

3、4、6后加7、1,

2、5、7、8后添9、3,

二十五个质数要记全。

十四、分数乘除法

分数乘法易学懂,分子分母分别乘。算式意义要搞清,上下能约更轻松。分数除法方法妙,原来除号变乘号。除数子母打颠倒,进行计算离不了。

十五、约分

约分、约分,相乘约净,省时省力。从上往下,从左到右,弄清数据,一数不漏。遇到小数,去点为整,位数不够,用“零”来补。

小学数学知识点顺口溜的实际运用

“求比一个数多几的数”的应用题

六年制数学课本第四册中“求比一个数多几的数”与“求比一个数少几的数”两种应用题,是大小两数进行比较,可以得到一个差。已知差与两数中的一个数,求另一个数,这就是求比一个数多几或少几的数。所以“比……多“与“比……少“两种应用题,都是求两个数相差的逆推题,题目结构相同。已知条件得”多几“与”少几“应用题,只是一个问题的两个侧面而已。学生解这类题最容易犯的错误,是见”多’ 就用加法算,见“少”就用减法算,凭个别字眼判定算法。

教学思路是:

1、分析数量关系,教给学生思考问题的方法。

2、充分发挥线段图的作用,使应用题的“事”转化为“理”,又由 “理”转化为“式”直观地表达出来,然后找出规律。

例:P17例5 光明小学种树,种了300棵柳树,种的杨树比柳树多70棵,种杨树多少棵?

一、 提问:有哪几种树? (柳树,杨树)

谁与谁比?(杨树与柳树比)

谁多?(杨树多) 谁少?(柳树少)

二、计算的关系式:柳树棵数+杨树比柳树多的棵数=杨树的棵数

三、算式表示:300+70=370(棵)

四、如果把第一个条件改为问题,问题改为条件,应该怎样算。

五、然后得出关键句:已知条件说比多(要求数在比前)比前用加,(要求数在比后)比后减。

猜你喜欢:

1. 六年级上册数学《比例》教案

2. 六年级上册数学《比例尺》教案

3. 六年级上册数学常见的量教案

4. 六年级上册数学《图形的放缩》教案

5. 六年级上册数学百分数的应用教案

6. 六年级上册数学《因数与倍数》教案

比的应用教案

作为一无名无私奉献的教育工作者,就难以避免地要准备教案,教案有助于学生理解并掌握系统的知识。那么教案应该怎么写才合适呢?以下是我为大家收集的比的应用教案4篇,仅供参考,大家一起来看看吧。

比的应用教案 篇1

教学内容:

冀教版小学数学六年级上二单元第5课时 (比的应用)

教学目标:

1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

2、培养学生应用所学数学知识解决实际问题的能力,使学生真正成为课堂的主人;

3、通过实例使学生感受到数学来源于生活,生活离不开数学。

教学重点:

1、正确理解按比例分配的意义。

2、掌握按比例分配应用题的特征和解题方法。

教学难点:

能正确、熟练地解答按比例分配的实际问题。

课前准备:

布置学生预习

教学过程:

一、创设情境

1、回顾以前学习过的平均分,由平均分的“公平”引出今天的题目如果还按照平均分,反而不公平。(两人共同合作劳动,完成份额不同,所得分配问题)

2、小结:刚才两位如果劳动资额相同,所以他们获得的报酬要按1:1来分配,这种分配方式也就叫平均分。如果完成劳动份额不相同,所以他们获得的报酬要按1:1来分配就不公平,怎么办?

(组织交流)

师:这里的报酬要完成份额的比进行分配比较合理。像这样,把一个数量按一定的比来进行分配,通常叫做按比例分配。(揭示课题:按比例分配)

二、初步感知

1、想一想,两位应该按怎样的比来分配劳动所得?(板书:按完成的比3:2进行分配)

2、谁能用自己的语言说说3:2的具体含义。

3、谁能用算式表示两位各应分得多少元?

4、小结:通过刚才的生活实例,你认识了什么?(什么是按比例分配)

三、自主探究,合作研习

1、谈话:其实,在生活中,像这样的按比例分配的例子是很多的,你有没有遇到过?说一个给大家听听,今天,我们学习第19页内容,由于我们昨天已经布置了预习,所以我们按以下提纲进行交流。

2、 此时用PPT出示“学习内容”“学习目标”和“导学提纲”

学习内容:冀教版小学数学六年级上册第19页。

学习目标

1、认识按比例分配的实际问题,掌握这类实际问题的解答方法。

2、认识连比,理解三个数量连比的意义。

导学提纲

1、例1中“紫色与红色方块数的比是3:5”的含义是什么?

2、与同学说说例题中每种方法的解题思路。

3、你能画图理解这两种解题方法与同学交流吗?

4、你怎样理解例2“按照2:3:5配置混凝土”这句话的含义?

5、“练一练”第3题是把1200千克培养料按怎样的比来分配?

学生根据导学提纲进行下列活动,教师巡视,深入各小组交流,关注学困生。

(1)独立思考,尝试解答。

(2)小组交流,说说想法。

(3)组织交流,形成思路。

(4)选好内容,进行预展示。

四、集中展示

1、例1中“紫色与红色块数的比是3:5”的含义是什么?

预设:(1)这里的3:5,也就是在8个方块,紫色占3份,红色占5份,一共有8份,紫色占了方块总数的83,红色占方块总数的85。求紫色(茄子)有多少平方米,就是求984平方米的83是多少,求红色(西红柿)有多少平方米,就是求984的85是多少。

(2)把984平方米平均分成5份,3份是茄子,5份西红柿。总份数3+5=8,

茄子为984÷8×3=369(平方米),西红柿为984÷8×5=615(平方米)。

2、展示例2的解题思路及方法……

3、展示“练一练3”的解题方法

小结:通过刚才的生活实例,你又有什么新的收获?你觉得按比例分配应用题的解答关键是什么?

预设:(1)关键是根据已知的比表示的份数关系,找出各种数量占总数量的几分之几,也就是把比转化成分数,再按求一个数的几分之几是多少乘法计算。(2)根据份数先求总份数,再求每份数,最后求几份数。

五、反馈检测

1、本次校运动会上共有644人报名参加各项目比赛,其中男女运动员人数的比是4 :3,你知道参加各项比赛的女运动员有多少名吗?

2、低年级老师用一根长40厘米的铁丝围成一个三条边的比是4 : 7 : 9的三角形,请你帮低年级老师算算三条边的长度各是多少?

3、六(1)班有学生35人,六(2)班有学生36人,六(3)班有学生34人。在第十二届田径运动会入场式上需要制作210面彩旗,按照六年级各班学生人数的比,六年级三个班各需要做多少面彩旗?

4、一个标准的篮球场是长方形,它的周长是86米。长与宽的比是28:15。求这个标准的篮球场的面积。

六、课堂小结

学了这节课,你有什么收获?

七、课堂作业

20页,1、2、4、5。

板书设计:

按比例分配的解题方法

一要知道分配的数量,二要知道按怎样的比分配

比的应用教案 篇2

教学分析:

按比例分配的练习。

学情分析:

已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。

教学目标:

能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。

教学策略:

练习、反思、总结。

教学准备:

小黑板

教学过程:

一、基本练习

(一)六1班男生和女生的比是3:2

1.男生人数是女生人数的( )

2.女生人数是男生人数的( ),女生人数和男生人数的比是( ).

3.男生人数占全班人数的( ),男生人数和全班人数的比是( ).

4.全班人数是男生人数的( ),全班人数和男生人数的比是( ).

5.女生人数占全班人数的( ),女生人数和全班人数的比是( ).

6.全班人数是女生人数的( ),全班人数和女生人数的比是( ).

(二)学校有买来小足球和小篮球120个,小足球和小篮球个数的比是3比5。学校买来小足球和小篮球各多少个?

把250按2比3分配,部分数各是多少

二、变式练习

1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?

2、有一种药水,按药液与水的比为1比5000配制而成。用这样的药液0.5千克,可配制这样的药水多少千克?

教学反思:

提高练习的灵活度,以及练习的形式。

比的应用教案 篇3

教学内容:

北师大版六年级数学上册第55页、第56页。

教学目标:

1、能运用比的意义解决按照一定的比进行分配的实际问题。

2、进一步体会比的意义,提高解决问题的能力。

3、培养学数学的兴趣,养成良好的思维品质。

教学重点:

理解和掌握按一定的比进行分配的意义,并进行实际应用。

教学难点:

把比熟练地转化成分数,将分数知识横向迁移。

教学准备:

多媒体课件。

教学过程:

一、复习牵引(课件出示)

同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某班男生和女生的人数比是5:4”,从这组比中,你能推断出什么信息呢?(课件出示题目)

学生自由发言,预设推断如下

1、全班人数是9份,男生占其中的5份,女生占其中的4份。

2、以全班为单位“1”,男生是全班的(),女生是全班的()。

3、以男生为单位“1”,女生是男生的(),全班是男生的()。

4、以女生为单位“1”,男生是女生的(),全班是女生的()。

5、女生比男生少(或20%)。

6、男生比女生多(或25%)。

追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)

二、情境导入,引出课题(课件出示)

昨天我和王老师合伙买福利彩票,我出了30元,王老师出了50元,结果我们中了一个二等奖,奖金8000元。我想对半分,各分4000元,王老师说这不公平,你们认为呢?怎么分奖金才合理呢?

三、合作探索,解决矛盾

1、你能帮老师解决这个问题吗?请试试看,可以小组内交换意见、讨论想法。

2、说以说你的想法。组织反馈,逐一展示学生解题思路。

3、我们分到的奖金是否合理,该怎样检验?(两个数量和要等于8000,出资的比是3:5或5:3)

4、小结:像这样把8000元彩票奖金按照出资多少来进行分配的情况叫做按比例分配。(板书:按比例分配)

(出示课题:比的应用)

四、自主探索

1、课件出示教材(1),把一筐橘子分给大班和小班,大班30人,小班20人。

思考:把这筐橘子分给大班和小班,怎么分合理?

学生商量分法,得出:按大班和小班的人数来分比较合理。

2、大班人数和小班人数的比是3:2 学生分好后,交流分法,填表完成。

3、如果有140个橘子,按3:2分,可以怎样分?你会分吗?试着分一分。

学生试做。

4、与同学交流分的方法。分组讨论疑点,并试着在组内解决。

四、交流方法,老师精讲

1、班内交流,老师答疑

三种方法

(1)、方法一:借助表格分。

(2)、方法二:画图

发现橘子总数被平均分成了5份,大班占3份,小班占2份。先求出一份的数,再分别乘以3和2,就求出了大班和小班分的橘子个数。

140个

140÷(3+2)=28 大班:28×3=84(个)

小班:28×2=56(个)

追问:为什么要“140÷(3+2)”?

(3)、方法三:根据分数的意义解题。先求出一共分成几份,再求出大班和小班分的'个数分别占橘子总数的几分之几,最后根据分数的意义解题。

3+2=5 140× = 84(个)

140× = 56 (个)

答:大班分84个,小班分56个,比较合理。

2、以上几种方法你最喜欢哪种?说明理由。引导学生小结方法⑶的思路。

⑴计算分配的总份数。

⑵计算各部分占总量的几分之几。

⑶根据分数乘法的意义解题。

五、巩固练习,深化认识

1、小清要调制2200克巧克力奶,巧克力和奶的质量比是2:9。需要巧克力和奶各多少克?

2、 3月12日是植树节,学校把种植60棵小树苗的任务分配给602班和603班,两班都是43人。想一想,如果你是大队辅导员,你会按怎样的比例分配,两班各栽多少棵?

3、完成教材第56页练一练第3题合理搭配早餐。

六、总结评价

1、回顾这节课所学的知识,谈谈收获。

2、布置作业。

板书设计:

比的应用

3+2=5 140× = 84(个)

140× = 56 (个)

答:大班分84个,小班分56个。

比的应用教案 篇4

教学目标

使学生进一步认识按比例分配应用维他命和按比例分配应用题的特征和解题思路,能应用比的知识解答相关应用题。

进一步提高学生分析、推理等思维能力和应用比的知识解决问题的能力。

教学重难点

应用比的知识解答相关应用题。

教学准备

教学过程设计

教学内容

师生活动

备注

   一、复习

二、应用题练习

三、

四、作业

1、说出下面每个比表示的具体含义。

苹果和梨的重量比是2∶3;

电视机和收音机的台数比是5∶2;

学校老师与学生的人数比是1∶25。

2、口答

练习136;说说是怎样想的?

3、揭示课题

1、练习137

找一找相同点和不同点。

这两道题里的40棵各与比里哪个份数相对应?

这两道题,哪一道是按比例分配问题,哪一道不是?为什么?

按比和分数的关系想一想,这两道题会解答吗?

上下练习;

两题在解答时有什么不同?为什么(1)用40×3/5+3,而(2)用40×3/5来解答?

2、题组练习

(1)学校饲养组养的白兔和黑兔只数的比是5∶4。白兔有15只,黑兔有多少只?

(2)学校饲养组养的白兔和黑兔只数的比是5∶4。黑兔有12只,白兔有多少只?

说说有什么相同和不同的地方?

这两道题与按比例分配问题相同吗?有什么不同?

3、补充练习

出示:男生人数和女生人数的比是3∶4。

,女生有多少人?

1)学生说说上面比的具体含义。

2)口头补充成按比例分配应用题,并口头列式解答;

3)口头补充成已知一个数量,求另一个数量的应用题,并口头列式。

练习139

课后感受

同学们能应用比的知识解答相关应用题。

求六年级比的应用:计算,公式,方法,等等总结

第一单元

一、轴对称图形

1、只有1条对称轴的图形是(等腰三角形、等腰梯形、半圆)

有2条对称轴的图形是(长方形)

有3条对称轴的图形是(等边三角形)

有4条对称轴的图形是(正方形)

有无数条对称轴的图形是(圆、圆环)

2、圆的对称轴的图形是(直径所在的直线)

3、对称轴是直线

4、圆是(平面图形、曲线、轴对称)图形。

二、在同圆或等圆里(必不可少的前提),直径是半径的2倍,半径是直径的一半。

d=2r r=d÷2

三、在同圆或等圆里(必不可少的前提),直径都相等、半径都相等。

四、圆心确定圆的位置、半径确定圆的大小。圆规两脚之间的距离是圆的半径。

五、圆的周长

1、围成圆曲线的长度叫做圆的周长。

2、圆的周长除以直径的商,(周长和直径的比值),叫做圆周率,它是一个固定不变的数,和圆的大小无关。π>3.14。圆的周长大约是直径的3.14倍。

3、c圆=πd c圆=2πr

4、长方形的周长=(长+宽)×2 =(a+b)×2

正方形的周长=边长×4=4a

5、长度和周长单位有:km m dm cm mm

6、已知周长求直径 d=C÷π

已知周长求半径 r=C÷π÷2

7、3.14×(1――9)

六、半圆的周长

C半圆=d+πd÷2 C半圆=2r+πr

七、圆的面积

1、把圆平均分成若干份,可以拼成一个平行四边形或长方形。

2、S圆=πr2=π(d÷2)2

3、S长方形=长×宽=ab

S正方形=边长×边长=a2

S平行四边形=底×高=ah

S三角形=底×高÷2=ah÷2

S梯形=(上底+下底 )×高÷2=(a+b)×h÷2

S半圆=πr2÷2

S圆环=S大圆-S小圆=π(R2-r2)

4、面积和表面积单位有:平方千米 公顷 平方米 平方分米 平方厘米

1平方千米=100公顷 1公顷=10000平方米

5、如果长方形的周长=正方形的周长=圆的周长,那么它们当中圆的面积最大。

6、(11――19)2

八、半径扩大n倍,直径扩大n倍,周长扩大n倍,面积扩大n2倍。

第二单元

1. 一、

1、是、等于、相当于,意思相同。

2、几成=几折

1. 二、求提高了、降低了、增加了、减少了、节约了、多了、少了百分之几,都是用:甲÷乙

2. 三、小数、分数和百分数的互化

1. 四、解答分数应用题的一般步骤

1. 找单位“1”

2. 判断单位“1”是已知的还是未知的

3. 如果单位“1”已知的,用乘法计算:单位“1”×对应分率

4. 如果单位“1”未知的,用除法计算:已知量÷对应分率=单位“1”;另外,也可以用方程。

5、减数=被减数-差 除数=被除数÷商

五、常见的数量关系

1、速度×时间=路程 路程÷速度=时间 路程÷时间=速度

2、单价×数量=总价 总价÷单价=数量 总价÷数量=单价

3、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

4、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数

六、方程

1、含有未知数的等式叫做方程。

2、解方程就是“唱反调”

七、利息=本金×利率×时间

第三单元

图形变换和图案设计时,会用到:轴对称、平移和旋转。

1. 轴对称

2. 平移:关注是上下平移还是左右平移,尤其是平移了多少格

3. 旋转:关注是顺时针还是逆时针方向旋转,关注旋转的角度是多少度

4. 运算定律:

加法交换律和性质

a+b=b+a

加法结合律

a+b+c=a+(b+c) 25+37+63=25+(37+63)

乘法交换律

a×b×c=a×c×b 25×9×4=25×4×9

乘法结合律

a×b×c=(a×c)×b 128×3×8=(125×8) ×3

乘法分配律

两个数的和与一个数相乘,可以把这两个加数分别和这个数相乘,再把两个级相加。

a×(b+c)=a×b+a×c 8×(125+25)=8×125+8×25

2.37×99

=2.37× (100-1 )

=2.37×100-2.37×1

减法的运算性质

a―b―c=a-(b+c) 14.29―3.9―6.1=14.29―(3.9+6.1)

第四单元

1. 两个数相除又叫做这两个数的比。其中,比号前面的数是比的前项,比号后面的数是比的后项,前项÷后项=比值

2. 比和除法、分数的关系

a÷b=a :b= (b≠0,除数、分母和后项不能为0)

例如:15÷25=( ):( )==( )%=( )(填小数)=( )折=( )成

再如:甲数和乙数的比是4:3,甲数是乙数的( / ),乙数是甲数的( / ),甲数是乙数的( )%,乙数是甲数的( )%,甲数比乙数多( )%,乙数比甲数少( )%。

(提示:甲数=4 乙数=3)

3. 化简比

化简比就是把一个比化成最简单的整数比。也就是:前项和后项都是整数,并且前项和后项只能有公因数1。

4. 注意:比值是一个数,而化简比结果是一个比。

例如::0.75化成最简单的整数比是( ),比值是( )。

5. 比的应用

重点关注:类似已知长方形的周长是28厘米,长和宽的比是4:3,求长方形的长、宽或面积。

6. 三角形三个内角度数的比是1:2:3或1:1:2,这个三角形是(直角)三角形。

7. 质量单位:吨 千克 克

8. 容积单位:升 毫升

9. 体积单位:立方米 立方分米 立方厘米

1升=1立方分米 1毫升=1立方厘米

10、人民币单位:元 角 分

11、大于0的数叫做正数,小于0的数叫做负数。正数和负数可以用来表示具有相反意义的量。0既不是正数也不是负数。

12、正数和负数可以抵消,比如:+5和-5能完全抵消;-8和+3抵消后得-5。

13、统计图有:(复式)条形统计图、(复式)折线统计图、扇形统计图。

14、条形统计图:很容易看出各种数量的多少。

15、折线统计图:不但可以看出数量的多少,而且能够表示数量的增减变化。

16、扇形统计图:能呈现各部分与总数的百分比。

(1) 平面图形知识;(2)平面图形的周长和面积;(3)立体图形的认识;(4)立体图形的表面积和体积。

(1) 平面图形知识

①直线、射线、线段的特点、联系与区别。

②角的特征、角的分类、角的度量方法。

③垂直与平行。

④三角形的特征,分类(按边分、按角分)。

⑤四边形。每类图形的特征,特殊与一般的关系。

⑥圆与扇形。圆的特征、直径、半径的特点,扇形与圆的关系。

⑦轴对称图形。(能画出学过的轴对称图形的对称轴)

要求:①掌握特征、建立联系,让学生感受到点到线,线到面、面到体的联系。

②能根据图形特征进行合理的判断、选择。

(2) 平面图形的周长和面积

①理解周长与面积概念。

②掌握每种图形的周长与面积计算公式及推导过程。

③能应用公式灵活解决问题。

①长方体、正方体、圆柱、圆锥的特征。

②长、正方体的关系。

(3) 立体图形的表面积和体积

②会求长方体、正方体、圆柱的表面积和体积;圆锥的体积。

③建立这四种立体图形体积计算的联系。

④加强体积与表面积的区别、体积与容积的区别的对比训练。

建议:几何初步知识这部分内容,知识容量比较大,复习时要让学生真正参与到学习中来,提高学习效率,教师就要设计一些具有思考性,挑战性、综合性强的问题激发学生积极思考,调动学生的积极性,充分发挥学生的主体作用,让他们在探究的过程中进一步理解、巩固所学的知识,体验成功的快乐,掌握学习的方法。

如:平面图形面积知识网络图由学生独立完成(独立思考、查阅资料、寻求帮助);长方体、正方体表面积可让学生自带磁带盒,设计包装方案——

切忌:面面俱到,不停讲解,不断提问,大量练习,只求结果,不重过程。

6、简单的统计

复习要点及要求:

(1) 平均数:理解平均数的意义;掌握求平均数的方法;能应用平均数解决实际问题。

(2) 统计表、统计图:了解统计表、图的种类,特点,制作方法,会分析统计图表。

建议:复习时忌机械练习,单调地填表、制统计图,应结合学生的实际生活设计一些实践活动,在活动中,让学生应用统计知识,既达到了巩固知识的目的,又调动了学生的积极性,主动性,发挥了学生的实践能力与创新能力。

如:从学生的学习生活出发,针对商场购物优惠方式多种多样的特点,让学生自己设计购物方案,选择最佳购物方案,在这个过程中完成统计知识的复习任务。

简单的比的应用学习过程的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于简单的比的思维导图、简单的比的应用学习过程的信息别忘了在本站进行查找喔。

扫描二维码推送至手机访问。

版权声明:本文由飞龙小词经验网发布,如需转载请注明出处。

本文链接:https://www.feilongsi.com/shenhuo/19835.html

分享给朋友:

“简单的比的应用学习过程(简单的比的思维导图)” 的相关文章

朱棣简介(朱棣简介100字)

朱棣简介(朱棣简介100字)

今天和朋友们分享朱棣简介相关的知识,相信大家通过本文介绍也能对朱棣简介100字有自已的收获和理解。自己轻松搞问题。文章目录一览: 1、朱棣到底是个什么样的人? 2、朱棣是什么帝号 3、朱棣是一个怎样的人?为何后世对他的评价褒贬不一? 朱棣到底是个什么样的人? 朱棣是个野心勃勃、胸怀天下的人...

用眼霜能去除眼袋吗(眼霜能不能去除眼袋)

用眼霜能去除眼袋吗(眼霜能不能去除眼袋)

针对用眼霜能去除眼袋吗这个问题,本文将综合不同朋友对这个眼霜能不能去除眼袋的知识为大家一起来解答,希望能帮到大家 文章目录一览: 1、眼霜可以去眼袋吗 眼霜去眼袋什么牌子好 2、眼霜能去掉眼袋吗 3、眼霜能去眼袋吗 什么眼霜去眼袋好 眼霜可以去眼袋吗 眼霜去眼袋什么牌子好 最近都没怎么休息...

吃鸡游戏进不去怎么回事(吃鸡进不了游戏)

吃鸡游戏进不去怎么回事(吃鸡进不了游戏)

今天给各位分享吃鸡游戏进不去怎么回事的知识,其中也会对吃鸡进不了游戏进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站 文章目录一览: 1、绝地求生登不上去怎么回事 绝地求生无法登录怎么回事 2、《绝地求生》安装完打不开游戏,怎么办? 3、吃鸡进不去一直在加载界面是什么原因? 4、...

华胥引莺歌换皮之痛哪一集(华胥引之莺歌篇是第几集)

华胥引莺歌换皮之痛哪一集(华胥引之莺歌篇是第几集)

本篇文章给大家谈谈华胥引莺歌换皮之痛哪一集,以及华胥引之莺歌篇是第几集对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 文章目录一览: 1、华胥引中莺哥的结局在第几集 2、华胥引31集以下剧情介绍 3、电视剧华胥引莺歌篇从哪一集开始? 华胥引中莺哥的结局在第几集 电视剧华胥引中第32...

谁发明了英语(谁发明了英语语法)

谁发明了英语(谁发明了英语语法)

有很多朋友不知道谁发明了英语要如何操作,今天为大家整理了很多谁发明了英语语法相关的答案,组成一篇内容丰富的文章,希望能到您 文章目录一览: 1、英语是谁发明? 2、英语是谁发明的? 3、英语是谁发明创造的? 4、英文是谁发明的? 5、英语是谁发明的? 6、英语是谁发明的如题 英...

苏泊尔电磁炉显示E2代码是什么故障(苏泊尔电磁炉故障代码e2是什么意思)

苏泊尔电磁炉显示E2代码是什么故障(苏泊尔电磁炉故障代码e2是什么意思)

针对苏泊尔电磁炉显示E2代码是什么故障这个问题,本文将综合不同朋友对这个苏泊尔电磁炉故障代码e2是什么意思的知识为大家一起来解答,希望能帮到大家 文章目录一览: 1、苏泊尔电磁炉显示E2代码是出了什么故障? 2、苏泊尔电磁炉e2是机器问题么?!速答!!!!!!!! 3、苏泊尔电磁炉显示E2代...