数列求和的基本方法和技巧(数列求和常用方法总结)
当朋友们看到这个文章时想必是想要了解数列求和的基本方法和技巧相关的知识,这里同时多从个角度为大家介绍数列求和常用方法总结相应的内容。
文章目录一览:
- 1、数列求和的基本方法和技巧
- 2、数列求和的方法总结
- 3、数列求和的方法
- 4、简介数列求和的七种方法
- 5、数列求和的七种方法
数列求和的基本方法和技巧
(1)等差数列等比数列直接用公式
(2)转化为等差数列和等比数列求和
(3)裂项求和
(4)错位相减
数列求和的方法总结
数列求和与三角函数在高考中轮番出现,一般分值在十分左右。下面给大家整理了数列求和的方法总结,欢迎阅读!
数列求和的.方法总结
01裂项相消法:
将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的结果,如图。
02公式法:
用常用求和公式求和得到细解结果,也是数列求和的最基本最重要的方法,如图。
03倒序相加法:
是解决数列求和经典方法,在等差数列前n项和公式的推导过程中,使用了这种方法,如图。
数列求和的方法
数列求和的方法如下:
方法一:错位相减
形如An=Bn∙Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q∙Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。
这种数列求和方式叫做错位相减。
备注:等差数列的通项常见形式为an=An+B(其中A、B为常数),等比数列通项常见的形式为an=Aqn-m(其中A、m为常数)。
方法二:裂项相消
把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。
方法三:分组求和
有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。
简介数列求和的七种方法
数列求和是高中数学考试中必考的题型,解答这类题型有许多方法,下面我就给大家介绍7种求和方法,希望对你有帮助。
1、倒序相加法
倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。
2、分组求和法
分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。
3、错位相减法
错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。
4、裂项相消法
裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。
5、乘公比错项相减(等差×等比)
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。
解析:数列{cn}是由数列{an}与{bn}对应项的积构成的,此类型的才适应错位相减,(课本中的的等比数列前n项和公式就是用这种方法推导出来的),但要注意应按以上三种情况进行分类讨论,最后再综合成三种情况
6、公式法
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
7、迭加法
主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。
数列求和的七种方法
常见的数列求和方式有7种,分别为:裂项相消法、错位相减法、倒序相加法、公式法、分组求和法、数学归纳法和观察法。这7种求解方法之间的联系如下图所示;在具体应用过程中,可根据每种方法的使用条件,灵活求解。若要熟练掌握数列求和方法,需要在掌握基本概念的基础上多加练习,熟能生巧,巧能成精。
举例:1、裂项相消法
顾名思义,就是将数列 an 通项拆分为若干项,一般为某数列 bn 相邻两项之差,这样求和时便可以抵消中间部分,只剩首尾两项。常见的能够裂项的数列如下所示。
2、错位相减法
适用于差比数列求和,即 an=bncn ,其中 bn 为等差数列, cn 为等比数列。
3、倒序相加法
数列求和的基本方法和技巧的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于数列求和常用方法总结、数列求和的基本方法和技巧的信息别忘了在本站进行查找喔。