相似三角形定理是什么(直角三角形的相似定理)
当朋友们看到这个文章时想必是想要了解相似三角形定理是什么相关的知识,这里同时多从个角度为大家介绍直角三角形的相似定理相应的内容。
文章目录一览:
相似三角形定理是什么 相似三角形判定定理都有哪些
1、平行于三角形一边的直线和其他两边所构成的三角形与原三角形相似;
2、如果两个三角形对应边的比相等且夹角相等,这2个三角形也可以说明相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.);
3、如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.);
4、如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似)。
三角形相似的三个判定定理是什么?
三角形相似的三个判定定理是:
1、平行于三角形一边的直线和其他两边所构成的三角形与原三角形相似。
2、两边对应成比例且夹角相等,两个三角形相似。
3、如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
性质定理:
1、对应角相等。
2、对应边成比例。
3、相似三角形的面积比等于相似比的平方。
常用的判定定理有以下:
1、如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(SAS)
2、如果两个三角形的三组对应边成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(SSS)
3、两三角形三边对应平行,则两三角形相似。(简叙为:三边对应平行,两个三角形相似。)
4、如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例 那么这两个直角三角形相似。(简叙为:斜边与直角边对应成比例,两个直角三角形相似。)(HL)
定理推论的性质:
1、相似三角形对应角相等,对应边成正比例。
2、相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3、相似三角形周长的比等于相似比。
4、相似三角形面积的比等于相似比的平方。
5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。
三角形相似的判定定理是什么?
相似三角形有四个判定定理,分别是:
1、平行于三角形一边的直线和其他两边所构成的三角形与原三角形相似。
2、两边对应成比例且夹角相等,两个三角形相似。
3、如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
4、如果两个三角形的两个角分别对应相等,则有两个三角形相似。
扩展资料:
相似三角形的预备定理:
平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)。
相似三角形的性质:
相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
相似三角形的周长比等于相似比。
相似三角形的面积比等于相似比的平方。
参考资料来源:百度百科-相似三角形
三角形相似定理是什么?
定理
1、平行于三角形一边的直线和其他两边所构成的三角形与原三角形相似。
2、两边对应成比例且夹角相等,两个三角形相似。
3、如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
4、如果两个三角形的两个角分别对应相等,则有两个三角形相似。
性质:
1、相似三角形对应角相等,对应边成比例。
2、相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3、相似三角形周长的比等于相似比。
4、相似三角形面积的比等于相似比的平方。
5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。
关于相似三角形定理是什么和直角三角形的相似定理的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。